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Quantization of Yang–Mills Theory

Sami I. Muslih,1 Hosam A. El-Zalan,2 and Fawzy El-Sabaa3

Received June 2, 2000

The canonical formulation of a constrained system is discussed. Quantization of
the massive Yang–Mills field as an application of a field theory containing
second-class constraints is studied. The set of Hamilton–Jacobi partial differential
equations and the path integral of these theories are obtained by using the
Muslih method.

1. INTRODUCTION

The generalized Hamiltonian dynamics describing systems with con-
straints was initiated by Dirac [1, 2] and is widely used in investigating
theoretical models in contemporary elementary particle physics [3, 4]. The
presence of constraints in such theories requires care when applying Dirac’s
method, especially when first-class constraints arise, since the first-class
constraints are generators of gauge transformations which lead to the gauge
freedom. Dirac showed that the algebra of Poisson brackets determines a
division of constraints into two classes: so-called first-class and second-
class constraints. The first-class constraints are those that have zero Poisson
brackets with all other constraints in the subspace of phase space in which
constraints hold; constraints which are not first-class are by definition sec-
ond-class.

Most physicists believe that this distinction is quite important not only
in classical theories, but also in quantum mechanics [3, 4].

In the case of unconstrained systems, the Hamilton–Jacobi theory pro-
vides a bridge between classical and quantum mechanics. The first study of
the Hamilton–Jacobi equations for arbitrary first-order actions was initiated
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by Santilli [5]. The quantization and construction of the functional integral
for theories with first-class constraints in canonical gauge was given by
Faddeev [6]. Faddeev’s method is generalized by Senjanovic [7] to the case
when second-class constraints appear in the theory. Moreover, Fradkin [8]
considered quantization of bosonic theories with first- and second-class con-
straints and the extension to include fermions in such gauges. Gitman and
Tyutin [3] discussed the canonical quantization of singular theories as well
as the Hamiltonian formalism of gauge theories in an arbitrary gauge. Recently
the Hamiltonian–Jacobi approach [9–11] has been developed to investigate
constrained systems. The equivalent Lagrangian method [12] is used to obtain
the set of Hamilton–Jacobi partial differential equations (HJPDE). In this
approach the distinction between first- and second-class constraints is not
necessary. The equations of motion are written as total differential equations
in many variables, which require the investigation of integrability conditions.
In other words, the integrability conditions may lead to new constraints.
Moreover, it is shown that gauge fixing, which is an essential procedure to
study singular systems by Dirac’s method, is not necessary if the canonical
method is used [11]. The path integral formulation based on the canonical
method is obtained in refs. 13–15.

In this paper, we shall treat massive Yang–Mills theories as constrained
systems. The path integral is obtained by using the Senjanovic and the
canonical methods.

2. PATH INTEGRAL FORMULATION

In this section, we briefly review the Senjanovic method and the Hamil-
ton–Jacobi method for studying the path integral for constrained systems.

2.1. Senjanovic Method

Consider a mechanical system with m first-class constraints and 2n
second-class constraints. Let the first-class constraints be called wa , the sec-
ond-class constraints ua , and the gauge conditions associated with the first-
class constraints xa. Let the xa be chosen in such a way that {xa , xb} 5 0.

Then the expression for the S-matrix element is [7]

^out.S.in& 5 # expH#1`

2`

( piq̇i 2 H ) dtJ &
t

dm(q(t), p(t)) (1)

where H is the Hamiltonian of the system and the measure of integration is
defined by



Quantization of Yang–Mills Theory 2497

dm(q, p) 5 &
a

d(xa) d(wa).det,{xa , wa},.

3 &
c

d(ua).det,{ua , ub},.1/2 &
i

dpi dqi (2)

2.2. Muslih Method

One starts from singular Lagrangian L 5 L(ql , q̇i , t), i 5 1, . . . . , n,
with the Hessian matrix

Aij 5
­2L

­q̇i­q̇j
(3)

of rank (n 2 r), r , n. The generalized momenta pi corresponding to the
generalized coordinates qi are defined as

pa 5
­L
­q̇a

, a 5 1, 2, . . . , (n 2 r) (4)

pm 5
­L
­ẋm

, m 5 n 2 r 1 1, . . . , n (5)

where qi are divided into two sets, qa and xm. Since the rank of the Hessian
matrix is (n 2 r), one may solve Eq. (4) for q̇a as

q̇a 5 q̇a(qt , ẋm, pa; t) (6)

Substituting Eq. (6) into Eq. (5), we get

pm 5 2Hm(qi , ẋm, pa; t) (7)

The canonical Hamiltonian H0 reads

H0 5 2L(qi , ẋn, q̇a; t) 1 paq̇a 2 ẋmHm, n 5 1, 2, . . . , r (8)

The set of HJPDE is expressed as

H8a1xb, qa,
­S
­qa

,
­S
­xb

2 5 0, a, b 5 0, 1, . . . , r (9)

where

H80 5 p0 1 H0 (10)

H8m 5 pm 1 Hm (11)

We define pb 5 ­S[qa; xa]/­xb and pa 5 ­S[qa; xa]/­qa with x0 5 t and S
being the action.

Now the total differential equations are given as
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dqa 5
­H8a
­pa

dxa (12)

dpa 5
­H8a
­qa

dxa (13)

dpb 5
­H8a
­tb

dxa (14)

dz 5 12Ha 1 pa

­H8a
­pa

2 dxa (15)

where z 5 S(xa, qa). These equations are integrable if and only if [11]

dH80 5 0 (16)

dH8m 5 0, m 5 1, 2, . . . , r (17)

If conditions (16), (17) are not satisfied identically, one considers them as
new constraints and again consider their variations. Thus, repeating this
procedure, one may obtain a set of constraints such that all variations vanish.
Simultaneous solutions of canonical equations with all these constraints pro-
vide the set of canonical phase space coordinates (qa , pa) as functions of ta;
the canonical action integral is obtained in terms of the canonical coordinates.
H8a can be interpreted as the infinitesimal generator of canonical transforma-
tions given by parameters ta, respectively. In this case the path integral
representation can be written as [13–15]

^out.S.in& 5 # P
n2p

a51
dqa dpa expH#t8a

ta
12Ha 1 pa

­H8a
­pa

2 dtaJ (18)

a 5 1, . . . , n 2 p, a 5 0, n 2 p 1 1, . . . , n.

In fact, this path integral is an integration over the canonical phase-
space coordinates (qa, pa).

3. AN EXAMPLE

As an example, let us consider the Lagrangian density for the massive
Yang–Mills theory as

, 5 2
1
4

Fa
mn(x)Fmn

a (x) 1
1
2

M 2Am
a(x)Aa

m(x) (19)

In Eq. (19), Fmn
a (x) is given by the formula
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Fmn
a (x) 5 ­mAn

a(x) 2 ­nAm
a(x) 1 gfabgAm

b(x)An
g(x) (20)

where f abg are the structure constants of the Lie algebra and g represents the
coupling constant.

The momenta pi
a, p0

a are defined as

pi
a 5

­,
­(Ȧa

i )
5 2F 0i

a (21)

and

p0
a 5

­,
­(Ȧa

0)
5 0 (22)

is the primary constraint.
Equation (21) leads us to express the velocities Ȧa

i as

Ȧi
a 5 [pa

i 2 ­i A0
a 1 gfabgA0

bAg
i ] (23)

The Hamiltonian density is given by

H 5
1
2

pa
i pa

i 2 pa
i ­i Aa

0 2 gf abgpi
aAb

0 Ag
i

1
1
4

F ik
aFa

ik 2
1
2

M 2A02
a 1

1
2

M 2Ai2
a (24)

Making use of (9)–(11), we find for the set of-HJPDE

H80 5 H0 1 pa
4 5 0 (25)

H81 5 pa
0 5 0 (26)

where

H0 5 # F1
2

pa
i pa

i 2 pa
i ­i Aa

0 2 gf abgpi
aAb

0 Ag
i

1
1
4

F ik
aFa

ik 2
1
2

M 2A02
a 1

1
2

M 2Ai2
aG d 3x (27)

The equations of motion are obtained as total differential equations
follows:

dAi
a(x) 5

­H80
­pa

i
dt 1

­H81
­pa

i
dAb

0

5 [pa
i (x) 2 ­i Aa

0(x) 1 gf abgAb
0(x)Ag

i (x)] dt (28)
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dpi
a(x) 5 2

­H80
­Aa

i
dt 2

­H81
­Aa

i
dAb

0

5 [gf abgpi
b(x)Ag

0(x) 2 M 2Aa
i (x)

2 ­kF ki
a(x) 2 F ik

g (x)gf abgAb
k (x)] dt (29)

dp0
a(x) 5 2

­H80
­Aa

0
dt 2

­H81
­Aa

0
dAb

0

5 [­ipi
a(x) 2 gf abgpi

b(x)Ag
i (x) 1 M 2A0

a(x)] dt 5 0 (30)

dpa
4(x) 5 2

­H80
­t

dt 2
­H81
­t

dAb
0 5 0 (31)

To check whether the set of equations (28)–(31) is integrable or not,
let us consider the total variation of Eq. (25). In fact,

dH80 5 dH0 1 dpa
4 (32)

5 2(­ipi
a 2 gf abgAg

i pi
b 1 M 2A0

a) dAa
0 5 0 (33)

Making use of (15), (25), and (33), we can write the canonical action inte-
gral as

z 5 # Fpi
aAa

i 2
1
2

pi
api

a 2
1

2M 2 (­ipi
a 2 gf abgAg

i pi
b)

3 (­npn
a 2 gf adtAt

kpk
d) 2

1
2

M 2Ai
aAi

a 2
1
4

F kn
a Fa

knG d 3x (34)

Now the S-matrix element is given by

^out.S.in& 5 # dAi
a dpi

a expFi # 12Ha 1 pa

­H8a
­pa

2 dtaG
5 # &

i,a
dAi

a dpi
a exp i # Fpi

aAa
i 2

1
2

pi
api

a

2
1

2M 2 (­ipi
a 2 gf abgAg

i pi
b)

3 (­npn
a 2 gf adtAt

kpk
d) 2

1
2

M 2Ai
aAi

a 2
1
4

F kn
a Fa

knG d 4x (35)
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Now we will apply the Senjanovic method to the previous example.
The total Hamiltonian is given as

HT 5 # 11
2

pa
i pa

i 2 pa
i ­i Aa

0 2 gf abgpi
aAb

0 Ag
i

1
1
4

F ik
aFa

ik 2
1
2

M 2A02
a 1

1
2

M 2Ai2
a2 d 3x 1 lap0

a (36)

where la is a Lagrange multiplier to be determined. Imposing the consistency
condition ṗ0

a 5 0 leads to

{p0
a, HT} 5 ­ipi

a 2 gf abgpi
bAg

i 1 M 2A0
a (37)

as a secondary constraint. Imposing the consistency condition

{­ipi
a 2 gf abgpi

bAg
i 1 M 2A0

a, HT} 5 0 (38)

we arrive at the result

M 2la 1 {­ipi
a 2 gf abgpi

bAg
i , H0} 5 0 (39)

which determinates la and no further constraints arise.
Making use of (18), we obtain

^out.S.in& 5 # &
a,i

DAa
i Dpi

a &
a

Dp0
aDA0

a det(M 2I )

3 &
a

{d(p0
a) d(­ipi

a 2 gf abgAg
i pi

b 1 M 2A0
a)}

3 expHi # Fpa
0 Ȧa

0 1 pi
a Ȧa

i 2
1
2

pi
api

a

2 pi
a(­n A0

a 2 gf adtAb
0 Ag

i ) 1
1
2

M 2Am
a Aa

m

2
1
4

Fa
lmF lm

a G d 4xJ (40)

Integrating over A0
a, and p0

a one can arrive at the result (35).

4. CONCLUSION

Path integral quantization of a massive Yang–Mills field is obtained by
using the canonical path integral formulation [13–15], since the integrability
conditions dH80 and dH81 are satisfied. This system is integrable, hence the
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path integral is obtained directly as an integration over the canonical phase
space coordinates (pi

a, Ai
a). In the usual formulation [7] one has to integrate

over the extended phase space (p0
a, A0

a, pi
a, Ai

a) and one can get rid of the
redundant variables (p0

a, A0
a) by using delta functions d(p0

a) and d(­i pi
a 2

qf abgAg
i pi

b 1 M 2A0
a).

As a conclusion, the Muslih method is simpler and more economical
there is no need to distinguish between first and secondary constraints, and
there is no need to introduce Lagrange multipliers; all that is needed is the
set of Hamilton–Jacobi partial differential equations and the equations of
motion. If the system is integrable then one can construct the canonical
phase space.

One should notice that for f abg 5 0 (a takes a single value) the results
obtained here reduce to the case for a massive vector field in electromagnetic
theory [15]. The results for M → 0 reduce to the case for a free field in
electromagnetic theory [14].
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